

NORTH SYDNEY BOYS HIGH SCHOOL

2010 YEAR 12 HSC ASSESSMENT TASK 1

Mathematics

General Instructions

- Working time 50 minutes
- Write on one side of the paper (with lines) in the booklet provided
- Write using blue or black pen
- Board approved calculators may be used
- All necessary working should be shown in every question
- Each new question is to be started on a **new page**.

Total Marks (50)

Attempt all questions

Class Teacher:

(Please tick or highlight)

- O Mr Berry
- O Mr Fletcher
- O Mr Rezcallah
- O Mr Lowe
- O Mr Ireland
- O Mr Barrett
- O Mr Trenwith
- O Mr Weiss

Student Number:

Question	1	2	3	4	, 5	Total	Total
Mark	<u>-</u> 9	13	- 8	<u>-</u> 11	<u>-</u> 9	50	100

2010 - Past paper

Question 1 (9 marks) Start a new page Marks (a) Differentiate with respect to x: (i) $\frac{x^2+2x}{x}$ 2 (i) $(4-x^2)^3$ 2 2 Find the equation of the tangent to the curve $y = x^3 - 2x + 2$ (b) at the point (2, 6)3 Question 2 (13 marks) Start a new page (a) Evaluate $\sum_{n=0}^{\infty} n^2$ 1 (b) The third term of an arithmetic progression is 21 and the 9th term is 57. Find the value of the first term and the common difference. (i) 2 Find the sum of the first 80 terms. (ii) 2 (c) Find the 10^{th} term of the geometric series -5, 10, -20, 3 (d) Frank keeps a big stack of paint cans in his hardware store. The stack has 3 cans on the top row and each succeeding row has 2 more cans than the previous row. (A diagram may be helpful here.) Find the number of cans in the 12th row. (i) 2 If there are 224 cans in the stack, how many rows are there? (ii) 3 Question 3 (8 marks) Start a new page (a) Consider the graph of $y = x^3 + 3x^2 - 9x - 11$ (i) Show that this function has stationary points at (1, -16) and (-3, 16) and determine their nature. 3 Find any points of inflexion. 2 (ii) (iii) Sketch the curve, showing all important features (not x-intercepts) 2 For what values of x is the curve increasing? 1 (iv)

Question 4 (11 marks) Start a new page

- (a) A particle is moving in a straight line so that its distance, x metres, from a fixed point, O, after t seconds is given by $x = \frac{1}{3}t^3 \frac{7}{2}t^2 + 6t$.
 - (i) Find the equation for its velocity.
 - (ii) Find its initial position and velocity.
 - (ii) When is the particle at rest?
- (b) A cone shaped storage tank is constructed. It has a slant height of 20 metres. The top has radius r metres and the whole tank is h metres high, as shown in the diagram:

- (i) Express r in terms of h.
- (i) Show that the volume, $V \,\mathrm{m}^3$ of the tank can be expressed by

$$V = \frac{\pi}{3}(400h - h^3)$$

(ii) Hence find the value of h which will give the cone its maximum volume.

Question 5 (9 marks) Start a new page

- (a) "The inflation level I is still increasing, but at a reduced rate of increase."
 - (i) Sketch a graph to illustrate the above statement.

1

1

(ii) What does the above statement mean with reference to

$$\frac{dI}{dt}$$
 and $\frac{d^2I}{dt^2}$?

(b) A container holds 50 litres of water. A pump extracts 10 litres on the first cycle and $7 \cdot 5$ litres on the second. In each future pumping cycle the pump extracts $\frac{3}{4}$ of the amount that the previous cycle extracted.

Show that the container will never be emptied, and find how much water will finally remain in the container.

3

(c) If the sum of the first n terms of a sequence is given by $S_n = n (2n - 1)$, find a formula for the nth term of the sequence, T_n .

$$\frac{QI(a)(i)}{dx} \frac{d(x^2+2x)}{dx} = \frac{d}{dx} (6+2)$$
= 1

(ii)
$$\frac{d}{dx} \left((4 - x^2)^3 \right) = 3 \cdot (4 - x^2)^2 - 2x$$

$$= -6x (4 - x^2)^2$$

(iii)
$$\frac{d}{dx} \left(\frac{3x+1}{2x-1} \right) = \frac{(2x-1)(3) - (3x+1)(2)}{(2x-1)^2}$$

$$= \frac{6x-3-6x-2}{(2x-1)^2}$$

$$=\frac{-5}{(2x-1)^2}$$

(b)
$$y = x^3 - 2x + 2$$

 $y' = 3x^2 - 2$
 $x' = 4x^2 - 2$
 $y' = 3 \cdot 2^2 - 2$
 $y' = 3 \cdot 2^2 - 2$

$$y = 10 \times -14.$$

$$\frac{Q^{2}}{n^{2}} (a) \sum_{n=1}^{5} n^{2} = 1^{2} + 2^{2} + 3^{2} + 4^{2} + 5^{2}$$

$$n=1 = 545$$

(b) (i)
$$T_3 = a + 2d = 21$$

 $T_9 = a + 8d = 57$

$$i. 6d = 36$$

$$d = 6$$

$$a = 9$$

(ii)
$$S_{80} = \frac{80}{2} (2 \times 9 + 79 \times 6)$$

= 19 680

(c)
$$T = \frac{10}{-5} = -2$$

(d) (i)
$$a=3$$
, $d=2$
 $T_{12} = 3 + 11 \times 2$

(ii)
$$224 = \frac{n}{2} \left(6 + 2(n-1)\right)$$

$$= n \left(3 + n - 1\right)$$

$$= n \left(n + 2\right)$$

$$n^{2} + 2n - 224 = 0$$

$$(n+16)(n-14) = 0$$

$$\frac{23}{2}$$
 (a) $y = x^3 + 3x^2 - 9x - 11$

(i)
$$y' = 3x^{2} + 6x - 9$$

 $= 3(x+3)(x-1)$
 $y'' = 6x+6$
 $= 6(x+1)$

For stat. point,
$$y'=0$$
 ... $x=-3$ or $x=1$ $y=16$ $y=-16$

At
$$(3,16)$$
, $y''=-12 < 0$.: $max.turn.pt. at $(3,16)$ }

At $(1,-16)$, $y''=6(2) > 0$.! $min.turn.pt.at (1,-16)$ }$

(ii) For inflexions,
$$y''=0$$
 : $x=-1$

Test: $-\frac{x}{y''} = 0$: change of concavity

 $y'' = 0$: inflexion

at $(1,0)$.

(iv) from the graph, y is increasing for
$$x < -3$$
 or $x > 1$

Q4 (a)
$$x = \frac{1}{3}t^3 - \frac{7}{2}t^2 + 6t$$

(i)
$$v = dx = t^2 - 7t + 6$$

(ii) at
$$t=0$$
, $x=0$ is at origin

$$v = 6$$
 ... $6m/s$ to right.

(iii) "at rest"
$$\Rightarrow V=0$$

i. $(t-1)(t-6)=0$
i. $t=1, 6$

So : at rest at I second & at 6 seconds.

(b) (i)
$$r^2 = 20^2 - h^2$$

 $r = \sqrt{400 - h^2}$

(ii)
$$V = \frac{1}{3} \pi r^2 \cdot h$$

 $= \frac{1}{3} \pi (400 - h^2) h$
 $V = \frac{\pi}{3} (400 h - h^3)$

(iii) For max.,
$$\frac{dv}{dh} = 0$$

 $\frac{1}{3}(400 - 3h^2) = 0$

$$3h^2 = 400$$

$$h = \frac{20}{5} \quad (as h > 0)$$

Test:
$$\frac{d^2V}{dh^2} = \frac{\pi}{3}(-6h) < 0$$

: max. at
$$h = \frac{20}{\sqrt{3}} m$$
.

 $\frac{25}{2}$ (a) (i)

(ii) $\frac{dI}{dt} > 0$ means in flation is increasing. $\frac{d^2I}{dt^2} < 0$ means the rate of increase $\frac{d^2I}{dt^2}$ is slowing down.

(b) The amounts extracted form an infinite G.P. with $\alpha=10$, $r=\frac{3}{4}$,

Since water extracted = 10+ 7,5+

$$s_0 = \frac{10}{1 - \frac{3}{4}}$$

= 40 litres

:. 10 litres will remain

V

(c) $T_n = S_n - S_{n-1}$ = n(2n-1) - (n-1)(2(n-1)-1)= $2n^2 - n - (n-1)(2n-3)$ = $2n^2 - n - (2n^2 - 5n + 3)$ = 4n - 3

 $T_0 = 4n - 3$

